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Hard-sphere fluids in contact with curved substrates
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The properties of a hard-sphere fluid in contact with hard-spherical and cylindrical walls are studied.
Rosenfeld’s density functional theory~DFT! is applied to determine the density profile and surface tensiong
for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid
to investigate the curvature dependence and the possible existence of a contribution tog which is proportional
to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at
infinite dilution, we provide an analytical expression for the surface tension of a hard-sphere fluid close to
arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results
show no signs for the existence of a logarithmic term in the curvature dependence ofg.
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I. INTRODUCTION

The properties of inhomogeneous fluids with spherica
cylindrical geometries have been investigated by many
thors in recent years@1–9# because curvature plays an im
portant role in many physical situations, including the fo
lowing examples. In the context of nucleation phenome
@10–12#, one considers the spontaneous formation of sph
cal droplets in a supersaturated vapor. The variation of
local curvature of confinements leads to a more complica
form of the depletion forces in colloidal suspensions@13–
15#. Wetting or critical adsorption of fluids on curved su
strates, such as spherical or cylindrical colloidal partic
may lead to the formation of liquid bridges if two colloid
come close to each other, and subsequently to floccula
@4,7,16–19#. In studies of the hydrophobic effect, one is co
cerned with the cost of free energy to immerse a hydropho
particle into a liquid@20,21#. Despite these efforts, the prop
erties of curved fluid interfaces are not understood as fully
the planar ones. Whether one deals with a drop of liq
surrounded by its vapor or with a big spherical particle i
mersed into a solvent of small particles, the statistic
mechanical description of such systems generates addit
difficulties @22,23# which call for further studies@24–26#.

Within this context, here we consider the case of a ha
sphere fluid in the grand canonical ensemble, character
by the radiusR of the spheres and the bulk number densityr
or equivalently the bulk packing fractionh5(4p/3)R3r, in
contact with a hard-spherical or cylindrical wall. The
curved walls can either be viewed as an external poten
exerted on the hard-sphere fluid,

Vi
ext~r !5H 0, r .Ri

`, r ,Ri ,
~1!

where the subscripti 5s, c denotes the spherical and cylin
drical symmetry, respectively, or as the surfaces of a sec
~big! species of radiusRi

(b) . The radiiRi entering the exter-
nal potential in Eq.~1! are related to the actual radiiRi

(b) via
Ri5Ri

(b)1R ~see Fig. 1!.
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The grand canonical potential of the systemV i can be
divided into a bulk partV i

bulk52pVi , wherep is the pres-
sure of the hard-sphere fluid andVi is the volume accessible
to the system, and an excess~surface! part V i

ex : V i5V i
bulk

1V i
ex . The surface tensiong i is readily definedas the ex-

cess grand potential per unit area,

g i5
V i

ex

Ai
(b)

5
V i2V i

bulk

Ai
(b)

, ~2!

whereAi
(b) is the surface area of the curved wall. WhileV i is

uniquely defined, this division into bulk and surface exce
parts is not unique. Depending on the choice of the divid
surface, the surface tension can even change sign. As

FIG. 1. Geometry of a hard-sphere fluid in contact with a ha
spherical (i 5s) or cylindrical (i 5c) wall with radius Ri

(b)5Ri

2R and volumeV(b). While the density profiler(r ) attains its
contact value atr 5Ri , we choose the wall, i.e., the surface wi
radius Ri

(b) as dividing surface for the calculation of the surfa
tension.
©2003 The American Physical Society02-1
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cated by the superscript~b! in Eq. ~2!, we use the actual wal
corresponding to the radiusRi

(b) as the dividing interface.
Within density functional theory~DFT!, the grand poten-

tial V i of the system can be expressed as

V i@r#5F @r#1E d3rr~r !„Vi
ext~r !2m…, ~3!

where F @r#5Fex@r#1Fid@r# is the intrinsic Helmholtz
free energy functional that can be split into an ideal g
contributionFid@r# and an excess~over the ideal gas! term
Fex@r#. The only explicit dependence ofV i@r# on the exter-
nal potential originates from the second term in Eq.~3!. The
equilibrium density profiler(r ) satisfies the Euler-Lagrang
equation

dV i@r#

dr~r !
50. ~4!

For the equilibrium density profiler(r ), the density func-
tional reduces to the grand potential of the system, i.e.,V i
5V i@r(r )#, and we can rewrite Eq.~2! as

g i5
V i@r~r !#1pVi

Ai
(b)

. ~5!

From Eqs.~1!, ~3!, and~4! it follows that the change in the
grand potential due to an infinitesimal change of the rad
Ri

(b) of the curved wall, at constant chemical potentialm and
temperatureT, is given by

S ]V i

]Ri
(b)D

m,T

5E d3r
dV i@r#

dr~r !

]r~r !

]Ri
(b)

1E d3rr~r !
]Vi

ext~r !

]Ri
(b)

.

~6!

The first term on the right-hand side of Eq.~6! vanishes by
virtue of Eq.~4! while the second term, for the external p
tential given in Eq.~1!, is equal tob21Ai r(Ri

1), where
r(Ri

1) denotes the contact density of the hard-sphere flui
the curved wall. This leads to the sum rules@24#

bS ]V i

]Ri
(b)D

m,T

5H 4pRs
2r~Rs

1!, for a spherical wall

2pRcLr~Rc
1!, for a cylindrical wall.

~7!

In the case of a cylindrical wall, we consider the thermod
namic limit lim

L→`
(Vc /L) so that effects due to a finit

lengthL of the cylinder drop out. We note that the sum rul
in Eq. ~7! are valid for all one-component fluids in conta
with hard-spherical or cylindrical walls and are satisfied
all density functionals within weighted-density approxim
tion @2#.

Using the actual radiusRi
(b) also as the radius of the d

viding interface~see Fig. 1!, the grand potentialV i52pVi

1g iAi
(b) of the system is separated into a bulk and surf

term with the accessible volume,
03160
s

s

at

-

e

Vi5Vi~R̄!2Vi~Ri
(b)!, ~8!

where Vs(r )5(4p/3)r 3, Vc(r )5pr 2L, and R̄ is a mac-
roscopially large radius considered in the thermodynam
limit, and the surface areas

Ai
(b)5H 4p~Rs

(b)!2, for a spherical wall

2pRc
(b)L, for a cylindrical wall.

~9!

The sum rule in Eq.~7! can then be expressed as

r~Rs
1!S Rs

Rs
(b)D 2

5bp1
2bgs~Rs

(b)!

Rs
(b)

1bS ]gs~Rs
(b)!

]Rs
(b) D

m,T

~10!

for a spherical wall and

r~Rc
1!

Rc

Rc
(b)

5bp1
bgc~Rc

(b)!

Rc
(b)

1bS ]gc~Rc
(b)!

]Rc
(b) D

m,T

~11!

for a cylindrical wall. Equations~10! and ~11! indicate that
different versions of DFTs might lead to different conta
values nearcurvedwalls even if the underlying equation o
state is the same, which leads to identical contact values
hard planar wall. As pointed out by Henderson@26#, these
sum rules have interesting implications. Ifr(Ri

1) is analytic
as a function ofRi

215(Ri
(b)1R)21, one has

r~Ri
1!5c01

ci
(1)

Ri
(b)1R

1
ci

(2)

~Ri
(b)1R!2

1
ci

(3)

~Ri
(b)1R!3

1•••,

~12!

with c05bp for both the spherical and the cylindrical wa
and expansion coefficientsci

( j ) for j 51,2, . . . .Note that the
expansion in Eq.~12! is assumed to converge for arbitra
nonzero values ofRi . This assumption will be corroborate
by our numerical results in Sec. III. With Eq.~12!, the solu-
tion of the differential equation~10! can be written as

bgs~Rs
(b)!5

Cs
(1)

2 F11
2Cs

(2)

Cs
(1)

1

Rs
(b)

1
2cs

(3)

Cs
(1)

ln~Rs
(b)/R!

~Rs
(b)!2

1
2Ds

Cs
(1)

1

~Rs
(b)!2

1OS 1

~Rs
(b)!3D G , ~13!

whereDs is an integration constant,Cs
(1)5cs

(1)12bpR, and
Cs

(2)5cs
(2)1cs

(1)R1bpR2. Likewise, with Eq.~12! the solu-
tion of the differential equation~11! can be written as

bgc~Rc
(b)!5Cc

(1)F11
cc

(2)

Cc
(1)

ln~Rc
(b)/R!

Rc
(b)

1
Dc

Cc
(1)

1

Rc
(b)

1OS 1

~Rc
(b)!2D G , ~14!
2-2
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whereDc is an integration constant andCc
(1)5cc

(1)1bpR. In
the case of the spherical wall,gs(Rs

(b)) has the form

bgs~Rs
(b)!5bgs~`!F12

2dT

Rs
(b)

1OS ln~Rs
(b)/R!

~Rs
(b)!2 D G ,

~15!

wheregs(`)5b21(cs
(1)/2)1pR is the surface tension of th

planar wall and

dT52
cs

(2)1cs
(1)R1bpR2

cs
(1)12bpR

~16!

is the so-called Tolman length@27#, which plays an importan
role in nucleation theory@4,10–12#. We note that the value o
the Tolman length depends on the choice of the divid
surface; here the dividing surface has the radiusRs

(b) . If
these logarithmic terms in the expansion of the surface
sions do not vanish, the concept of the Tolman length ap
ently breaks down for cylindrically curved and genera
shaped walls@25,26#.

The analyticity ofg(R) in terms of 1/R is of considerable
importance because it provides the basis for the so-ca
Helfrich expansion of the surface free energy of arbitrar
curved surfaces in powers of the principal curvatures@28,29#.
Although this approach appears to be very useful for desc
ing membranes@30#, it has been shown recently that th
presence of long-ranged dispersion forces@4,31,32# or of
drying or wetting films @33# destroys the aforementione
analyticity for fluid interfaces and prevents the use of
Helfrich-type interface Hamiltonian for such systems.

We investigate the curvature dependence of the sur
tension as well as relationships between thermodynamic
local properties of a hard-sphere fluid following two differe
routes. First, in Sec. II the surface tension is determined fr
a bulk theory in which the curved wall is considered as
surface of an additional component at infinite dilution. Se
ond, a numerical approach based on the minimization of
Rosenfeld’s fundamental measure theory~FMT! free energy
functional @34,35# is presented in Sec. III. In this approac
the hard-sphere fluid is considered to be exposed to the
ternal potential of Eq.~1!.

II. BULK THEORY

We start by considering the bulk of a one-compon
hard-sphere fluid in a volumeVtot with Vtot→R3 in the ther-
modynamic limit. The grand potential of this system is giv
by V052pVtot , wherep is the pressure of the hard-sphe
fluid. A single particle of a second componentb is inserted
into this system. In view of the following discussion, th
only restriction for this particle is that it must be hard a
convex. The grand potential of the new system is

V5V01DV, ~17!

whereDV measures the change of the grand potential du
the insertion of a single particle.DV equals the one-particle
direct correlation function@14,15,36# which in the bulk limit
03160
g
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considered here is simply the excess chemical potentia
speciesb in the dilute limit rb→0, i.e.,

bDV52cb
(1) . ~18!

Although Eqs.~17! and ~18! are formally exact, it is impor-
tant to note that this approach within a bulk theory is e
pected to only work reliably if the considered fluid is in
single phase. In the case of phase separation, which c
lead to wetting or drying of the big sphere, this approa
most likely would fail @37#.

We evaluate Eq.~18! within the framework of Rosenfeld’s
FMT. It was shown by Rosenfeld@38# that FMT in the bulk
limit is closely related to scaled-particle theory~SPT!, so that
the predictions of our bulk theory can be considered as S
results, even though their derivation is quite distinct from
traditional application of SPT@40#. Within this approach
@34,35#, the excess free energy functional~over the ideal gas!
is given by

bFex5E d3r F~$na%!, ~19!

wherena denote weighted densities,

na~r !5(
j 51

N E d3r 8r j~r 8!wa
( j )~r2r 8!, ~20!

with geometrical weight functionswa
( j ) of species j

51, . . . ,N. In Rosenfeld’s approach there are six differe
weighted densities, four are scalar and two are vectorl
For a general hard bodyj, one has@39,41#

w3
( j )~r !5Q~ uR~ j !2r u!,

w2
( j )~r !5d~ uR~ j !2r u!,

wV2
( j )~r !5n̂( j )d~ uR~ j !2r u!,

w1
( j )~r !5

H ( j )

4p
w2

( j )~r !,

w0
( j )~r !5

K ( j )

4p
w2

( j )~r !,

wV1
( j )~r !5

H ( j )

4p
wV2

( j )~r !, ~21!

whereR( j )5R( j )(u,w) is the radius vector to the surface an
n̂( j ) is its outward unit vector normal to the surface at po
R( j ) of particle j. H ( j ) andK ( j ) are the integrated mean cu
vature and integrated Gaussian curvature of the particlj,
respectively@39,41#.

In the bulk limit for which the density profilesr j (r ) are
constant, as considered in this section, the vector weigh
densities vanish, and Eq.~18! takes the form

2cb
(1)5

]F

]n3
z31

]F

]n2
z21

]F

]n1
z11

]F

]n0
z0 , ~22!
2-3
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with characteristic functionsz i , i 50, . . . ,3, of theshape of
the particle of speciesb.

Assuming the general functional of the form given
Eqs. ~19!–~21!, one has for a general convex hard partic
@39,41#

z35V(b), ~23!

z25A(b), ~24!

z15A(b)
H (b)

4p
, ~25!

and

z05A(b)
K (b)

4p
, ~26!

where the shape of the particle is specified by its volu
V(b), its surface areaA(b), and integrated curvaturesH (b) and
K (b).

Within FMT there are several expressions for the exc
free energy densityF. For the given problem, we have cho
sen the original Rosenfeld form@34#

F~$na%!52n0 ln~12n3!1
n1n22n1•n2

12n3

1
n2

323n2n2•n2

24p~12n3!2
. ~27!

The partial derivatives of the excess free energy density w
respect to the weighted densities in the dilute limit of spec
b depend only on the packing fractionh and the radiusR of
the hard-sphere fluid:

]F

]n3
5

3h

4pR3

11h1h2

~12h!3
[bpPY , ~28!

]F

]n2
5

3h~21h!

8pR2~12h!2
[bgHW

SPT, ~29!

]F

]n1
5

3h

R~12h!
[f1 , ~30!

and

]F

]n0
52 ln~12h![f0 . ~31!

In the above equations,pPY andgHW
SPT are the Percus-Yevick

compressibility equation of state and the scaled-part
theory expression for the surface tension of a hard-sph
fluid at a planar hard wall@40#, respectively.

With the characteristic functions in Eqs.~23!–~26! and the
partial derivatives given by Eqs.~28!–~31!, one finds within
this approach for the grand potential of a hard-sphere fl
surrounding any convex hard particleb:
03160
e

s

th
s
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bV52bpPY~Vtot2V(b)!

1A(b)S bgHW
SPT1

H (b)

4p
f11

K (b)

4p
f0D . ~32!

By choosing the surface of the convex particle as the
viding interface, the bulk contribution to the grand potent
is simply V052pPY(Vtot2V(b)) and the surface tensio
follows directly as

bg~H (b),K (b)!5bgHW
SPT1

H (b)

4p
f11

K (b)

4p
f0 . ~33!

The particular choice of the dividing interface underlying E
~33! is motivated by the simplicity of the resulting expre
sion for the surface tension. Other choices of the divid
interface would lead to significantly more complex expre
sions and the elegant, simple form of Eq.~33! would be lost.
Obviously within this bulk approach, it is impossible to pic
up a contribution to the surface tension which is proportio
to the logarithm of the radius of curvature.

The surface tension in Eq.~33! is always positive for a
nonzero packing fractionh and its change for small curva
ture due to an increase in curvature is described by the
man lengthdT which within this approach is defined by

g~H (b),K (b)!5gHW
SPT@122H (b)dT1O~K (b)!#, ~34!

so that it is independent of the shape of the convex part
with

dT52
f1

8pbgHW
SPT

5
h21

h12
R. ~35!

Thus within this approach we find that the generaliz
Tolman length for a general hard convex cavity is negati
provided the surface of this hard cavity is chosen as
dividing surface. The grand potential@Eq. ~32!# and the sur-
face tension@Eq. ~33!# have been derived for a general co
vex hard wall and are related to the Helfrich Hamiltoni
@28#. In order to be able to calculate the contact density o
hard-sphere fluid on the basis of the sum rule in Eq.~7!, one
has to evaluate the expression in Eq.~33! for special cases
For a big spherical particle, the mean curvatureHs

(b)

51/Rs
(b) and the Gaussian curvatureKs

(b)51/(Rs
(b))2. By

combining Eqs.~33! and~10! within the present bulk theory
one finds for the contact value of the density profile of
hard-sphere fluid at a big hard sphere:

r~Rs
1!5bpPY2

9h2

4p~12h!3R3 H ~11h!
R

Rs
2h

R2

Rs
2J .

~36!

For finite curvatures the contact density is smaller than in
planar limit, which in the present approach is given by t
Percus-Yevick compressibility pressurebpPY . The differ-
ence between the contact density at finite curvature and
planar wall limit is a quadratic function in 1/Rs . A traditional
SPT approach@42,43#, in which an expression for the conta
2-4
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densityr(Rs
1) divided by the bulk density is derived, als

yields a quadratic dependence of the contact density
1/Rs . This latter quantity plays a central role in SPT.

For a cylindrical wall we have to proceed more careful
Since Eq.~33! was derived assuming a finite convex bod
we take the limitL→` only after the cylinder is inserted
into the bulk system. In this limit, the mean curvatureHc

(b)

51/(2Rc
(b)) and the Gaussian curvatureKc

(b)50. The con-
tact density of a hard-sphere fluid close to a cylindrical w
follows from Eq.~33! and the sum rule in Eq.~11! as

r~Rc
1!5bpPY2

9h2

4p~12h!3R3 H ~11h!

2

R

Rc
J , ~37!

which is linear in 1/Rc . For large radii of curvatureRi

→`, the contact densities at a big spherer(Rs
1) and at a

cylinder r(Rc
1) are related by 2r(Rc

1)2r(Rs
1)5bpPY

1O(1/Rs
2).

III. NUMERICAL RESULTS

As mentioned in the Introduction, an alternative approa
for calculating the surface tension and the contact densit
a hard-sphere fluid at a spherical or cylindrical wall cons
of minimizing the density functional,~3! numerically. Within
this approach, the curved wall enters the problem via
external potential specified in Eq.~1!. The solution of the
corresponding Euler-Lagrange equation yields the inhom
geneous equilibrium density profiler(r ). From r(r ) both
the contact densitiesr(Ri

1)5r(r 5Ri
1) and the surface ten

sionsg i(Ri
(b)) ~5! follow directly. In order to verify that the

numerical DFT results for the contact density and the surf
tension~from minimization! are consistent and to probe th
numerical accuracy of our DFT calculation, we confirm
numerically that the sum rule in Eq.~7! is satisfied very
accurately~within the range of four to six significant digit
depending on the packing fraction!.

Although the minimization of the density functional an
the bulk route discussed in Sec. II are, in principal, equi
lent approaches, they differ in practice because the ac
density functional for the hard-sphere fluid is an approxim
tion. Within an approximate treatment, it is expected that
numerical solution of the Euler-Lagrange equation, which
based on a variational principle, is more accurate than
aforementioned bulk approach. Nevertheless, for the h
sphere fluid which, apart from freezing, exhibits only
single phase both routes are expected to be in qualitativ
even semiquantitative agreement with each other.

First, we present in Fig. 2 our numerical results for t
surface tension at a spherical wall as obtained by full m
mization of the Rosenfeld functional for values ofh in the
range betweenh50.1 andh50.42 and with radii of curva-
tureRs

(b) in the rangeRs
(b)5R andRs

(b)510 000R. The DFT
results are denoted by symbols and the predictions of
bulk theory by full lines. For small values ofh we find both
results to be in excellent, quantitative agreement for all c
vatures, see Fig. 2~a!. Close to the planar wall limit, the leve
of quantitative agreement reduces significantly for lar
03160
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packing fractions, while it remains good for large curvatur
This deviation between the two different routes is expec
because in the limitRs

(b)→`, the bulk route reduces to th
SPT prediction of the surface tension at a planar wall, wh
is known to overestimate the surface tension of a hard-sp
fluid at a planar hard wall@44#. Since SPT obtains the plana
wall limit from extrapolating the behavior at small cavit
sizes@40#, this deviation is no surprise. Recently it was su
gested that SPT can be reoptimized by taking the planar
limit into account more accurately@37#.

Even for packing fractions at which the level of quantit
tive agreement is moderate@see Fig. 2~b!#, there is a good
qualitative agreement between the DFT results and our b
approach. This implies that the curvature dependence of
numerical data ofgs can be best approximated by a polyn
mial quadratic in 1/Rs

(b) with no evidence for a logarithmic
term.

The DFT results for the surface tension of a hard-sph
fluid in contact with a hard cylindrical wall are shown in Fig
3. Again the quantitative agreement between the DFT res
~symbols! and predictions of the bulk theory~full lines! is
excellent for low packing fractions and fair at higher valu
of h. The curvature dependence of the DFT data is captu
very well by a function linear in 1/Rc

(b) as predicted by the
bulk route.

A remarkable feature of Eq.~33! is that the ratio of the
coefficients corresponding to the term of the leading orde

FIG. 2. The surface tension of a fluid of hard spheres with rad
R near a hard-spherical wall of radiusRs

(b) . Symbols denote results
obtained from direct minimization of the Rosenfeld function
whereas the full lines are predictions of the bulk theory@see Eq.
~33!#. Small packing fractions (h50.1, . . . ,0.25) are shown in~a!
and large packing fractions (h50.3, . . . ,0.42) in ~b!. The agree-
ment between both routes is excellent for low packing fractio
Towards high values ofh, the level of quantitative agreement de
creases, while the bulk theory still reproduces qualitatively the D
results.
2-5
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1/Ri for spherical and cylindrical symmetry is exactly
~sinceHs

(b)52Hc
(b)). This behavior can also be found in th

numerical results of DFT calculations, i.e., based on the
homogeneous density profilesr(r ). In Table I, we show val-
ues of least-squares fits assuming that

bgs~Rs
(b)!5as

(0)1
as

(1)

Rs
(b)

1
as

(2)

~Rs
(b)!2

TABLE I. Values ofas
(0) , as

(1) , as
(2) , andac

(1) as obtained from
least-squares fit to DFT data of the surface tension of a hard-sp
fluid in contact with a spherical and cylindrical hard wall for va
ous values of the packing fractionh. Note that Eq.~33! predicts
as

(1)/ac
(1)52 for all h.

h as
(0)R25ac

(0)R2 as
(1)R as

(2) ac
(1)R as

(1)/ac
(1)

0.10 0.03083 0.02660 0.00837 0.01342 1.98
0.15 0.05281 0.04245 0.01286 0.02145 1.98
0.20 0.08078 0.06061 0.01754 0.03062 1.98
0.25 0.11643 0.08175 0.02235 0.04121 1.98
0.30 0.16213 0.10674 0.02725 0.05360 1.99
0.35 0.22127 0.13660 0.03229 0.06823 2.00
0.40 0.29924 0.17195 0.03800 0.08548 2.01
0.42 0.33761 0.18747 0.04084 0.09312 2.01

FIG. 3. The surface tension of a fluid of hard spheres with rad
R near a hard cylindrical wall of radiusRc

(b) . Symbols denote re-
sults obtained from direct minimization of the Rosenfeld function
whereas the full lines are predictions of the bulk theory@see Eq.
~33!#. Small packing fractions (h50.1, . . . ,0.25) are shown in~a!
and large packing fractions (h50.3, . . . ,0.42) in ~b!. The agree-
ment between both routes is excellent for low packing fractio
Towards high values ofh the level of quantitative agreement d
creases, while the bulk theory still reproduces qualitatively the D
results.
03160
-

and

gc~Rc
(b)!5ac

(0)1
ac

(1)

Rc
(b)

,

i.e., the simplest formulas to fit our DFT data. To a go
approximation, the ratioas

(1)/ac
(1) equals 2 for all densities

This ratio agrees with the predictions of the bulk theo
as

(0)5ac
(0) is the planar wall surface tension. The Tolma

length @compare Eq.~34!# is given bydT
(s)52as

(1)/(2as
(0))

anddT
(c)52ac

(1)/ac
(0) . In Fig. 4, we plotdT

(s) ~diamonds! and
dT

(c) ~circles! together with the prediction of the bulk theor
~35! ~full line! as a function of the packing fractionh.

Thus neither the bulk theory nor the numerical DFT r
sults provide any hints for the occurrence of logarithm
terms in the expression of the surface tension of hard-sp
fluids in contact with curved hard surfaces. For a spher
cavity this result, within the bulk theory, agrees with the S
predictions @42,43#, as expected. However, both the bu
theory, as well as SPT, and the DFT are approximate in
ture and thus this observation gains full weight only in co
bination with the proof given in Ref.@45# of the nonexistence
of a logarithmic term in the free energy for the spheric
cavity. We note that this proof does not hold in the prese
of long-ranged forces@4,31,32# or of drying or wetting films
@33#. In Ref. @45# it was speculated, but not proven, that th
proof should also hold generally for convex cavities. That
logarithmic term does not show up in the numerical res
underscores the high quality of Rosenfeld’s FMT.

For the contact density, one knowsa priori that for all
values ofh both the DFT route and the bulk approach yie

re

s

,

.

T

FIG. 4. The Tolman lengthdT of a fluid of hard spheres with
radiusR at curved hard walls as a function of the packing fracti
h. Diamonds and circles denote results for spherical and cylindr
walls, respectively, while the full line corresponds to the predict
of the bulk theory@Eq. ~35!#.
2-6
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the same contact value,r(Ri
1→`)5bp, of the density pro-

file of a hard-sphere fluid in the limit of the planar wall. F
finite curvature, we find that the contact densities obtain
numerically from DFT~symbols! and analytically from our
bulk theory forg(Rs

(b)) ~full lines! are in very good quanti-
tative agreement for all values ofh, as shown in Fig. 5 for
spherical walls and in Fig. 6 for cylindrical walls. Only fo
very large curvatures the actual DFT contact densities
slightly overestimated by the bulk theory.

For the spherical wall in Fig. 5, we also plot the conta
density obtained from an empirical fit to simulation da
~dotted lines! by Degreve and Henderson@6#. In terms of
Rs

21 , this fit interpolates linearly between the planar w
limit within the Carnahan-Starling theory and the conta
value of the pair correlation functiong(r ) corresponding to
R/Rs50.5. At high packing fractions, this fit deviates fro
our results in the planar wall limit due to the difference b
tween the Carnahan-Starling equation of state and
Percus-Yevick compressibility pressure which underlies b
our approaches. At very high packing fractions, there
additional deviations because the simple linear fit does
capture the actual higher-order terms inRs

21 . Nonetheless,
the overall agreement between our results and this fit is go

IV. CONCLUSIONS AND SUMMARY

Our analysis of the local structure and the thermodyna
ics of the hard-sphere fluid near hard curved substrates

FIG. 5. The contact values of the density profile of a fluid
hard spheres with radiusR at a hard spherical wall with radiu
Rs

(b)5Rs2R as obtained from direct minimization of the Rosenfe
functional ~symbols!, from the bulk theory@Eq. ~36!# ~solid lines!,
and from a semiempirical parametrization@6# ~dotted lines!. The
results for the packing fractionh50.2 are given in~a! and for h
50.4 and h50.42 in ~b!. Even for high packing fractions, th
agreement between the DFT results and the predictions of the
theory is very good.
03160
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lead to the following main results.
~1! We have studied the curvature dependence of the

face tension of a hard-sphere fluid at hard-spherical and
lindrical walls ~Fig. 1! obtained by minimizing the Rosen
feld’s fundamental measure density functional. We ha
found no indications of logarithmic singularities in the e
pansion of the surface tension in terms of curvatures
spherical or cylindrical walls. For the spherical cavity, th
result is in line with the proof of the nonexistence of a log
rithmic term in the free energy.

~2! Based on the Rosenfeld’s fundamental measure the
we have derived an analytical expression for the surface
sion of a hard-sphere fluid close to hard, arbitrarily curv
convex walls in terms of their integrated mean and Gauss
curvatures,H (b) and K (b) @see Eq.~33!#. This approach,
which is a SPT approach in nature@38#, also does not rende
logarithmic singularities of the surface tension as a funct
of the radii of curvature. For a spherical cavity this fa
agrees with observations of Refs.@42# and @43#. There is
good agreement between the results of the density functi
theory and the bulk theory which treats the curved wall
the surface of a particle of a second component in infin
dilution ~Figs. 2 and 3!. The Tolman length as a function o
the packing fraction of the hard-sphere fluid is shown
Fig. 4.

~3! Based on the sum rule for curved substrates, we h
obtained expressions for the contact values of the den
profile of a hard-sphere fluid close to spherical@Eq. ~36!# and
cylindrical @Eq. ~37!# walls. A comparison with the density

lk

FIG. 6. The contact values of the density profile of a fluid
hard-spheres with radiusR at a hard cylindrical wall with radius
Rc

(b)5Rc2R as obtained from direct minimization of the Rosenfe
functional ~symbols! and from the bulk theory@Eq. ~37!# ~solid
lines!. The results for the packing fractionsh50.1 andh50.2 are
given in ~a! and for h50.4 andh50.42 in ~b!. Even for high
packing fractions, the agreement between the DFT results and
predictions of the bulk theory is very good.
2-7
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functional results indicates that the analytical expression
the contact values are very reliable; only at rather high pa
ing fractions they slightly overestimate the density functio
values~Figs. 5 and 6! for large curvatures.

~4! The ratio of the leading-order terms in the expans
of the surface tension as a function of curvature, obtai
from full minimization of the fundamental measure fun
tional, for cylindrical and spherical symmetry equals 2~see
Table I!. This is in agreement with the aforementioned bu
theory@Eq. ~33!#. This also agrees with the general feature
the Helfrich theory@28#, in which for a sphere the contribu
ys

ys

m

.L

er.

03160
of
k-
l

n
d

f

tion to the surface tension linear in the curvature is twice
large as for a cylinder.

Thus our findings indicate that nonanalyticities of the c
vature dependence of surface tensions arise only via dis
sion forces acting on the fluid particles@4# or via the onset of
drying or wetting transitions on curved substrates@33#.
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