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Hard-sphere fluids in contact with curved substrates
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The properties of a hard-sphere fluid in contact with hard-spherical and cylindrical walls are studied.
Rosenfeld’s density functional theofpFT) is applied to determine the density profile and surface tengion
for wide ranges of radii of the curved walls and densities of the hard-sphere fluid. Particular attention is paid
to investigate the curvature dependence and the possible existence of a contribgtiohith is proportional
to the logarithm of the radius of curvature. Moreover, by treating the curved wall as a second component at
infinite dilution, we provide an analytical expression for the surface tension of a hard-sphere fluid close to
arbitrary hard convex walls. The agreement between the analytical expression and DFT is good. Our results
show no signs for the existence of a logarithmic term in the curvature dependence of
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[. INTRODUCTION The grand canonical potential of the systém can be
divided into a bulk parQ)“*= —pV;, wherep is the pres-
The properties of inhomogeneous fluids with spherical orsure of the hard-sphere fluid angl is the volume accessible
cylindrical geometries have been investigated by many auto the system, and an excessirface part Q&> Qi:QibU'k
thors in recent yearl—9] because curvature plays an im- 4+ ()€% The surface tensioty, is readily definedas the ex-
portant role in many physical situations, including the fol- cess grand potential per unit area,
lowing examples. In the context of nucleation phenomena
[10—-12, one considers the spontaneous formation of spheri- QS Q;—Qbuk
cal droplets in a supersaturated vapor. The variation of the
local curvature of confinements leads to a more complicated
form of the depletion forces in colloidal suspensigi8— (o) )
15]. Wetting or critical adsorption of fluids on curved sub- WhereéA™ is the surface area of the curved wall. WHilg s
strates, such as spherical or cylindrical colloidal particleiNiquely defined, this division into bulk and surface excess
may lead to the formation of liquid bridges if two colloids P&rts is not unique. Depending on the choice of the dividing
come close to each other, and subsequently to flocculatioft!face, the surface tension can even change sign. As indi-
[4,7,16—-19. In studies of the hydrophobic effect, one is con-
cerned with the cost of free energy to immerse a hydrophobic
particle into a liquid20,21]. Despite these efforts, the prop-
erties of curved fluid interfaces are not understood as fully as
the planar ones. Whether one deals with a drop of liquid
surrounded by its vapor or with a big spherical particle im-
mersed into a solvent of small particles, the statistical-
mechanical description of such systems generates addition:
difficulties [22,23 which call for further studie§24—26. K
Within this context, here we consider the case of a hard-
sphere fluid in the grand canonical ensemble, characterizes
by the radiusR of the spheres and the bulk number denpity
or equivalently the bulk packing fraction= (4m/3)R%p, in \
contact with a hard-spherical or cylindrical wall. These *
curved walls can either be viewed as an external potentia *,
exerted on the hard-sphere fluid,
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S . ) FIG. 1. Geometry of a hard-sphere fluid in contact with a hard-
where the subscrifit=s, ¢ denotes the spherical and cylin- ¢ arical (=s) or cylindrical (=c) wall with radius R®=R,

drical symmetry, respectively, or as the surfaces of a secondr and volumeVv(®. While the density profileo(r) attains its
(big) species of radiuR™ . The radiiR; entering the exter- contact value at=R,, we choose the wall, i.e., the surface with
nal potential in Eq(1) are related to the actual rad® via  radiusR®™ as dividing surface for the calculation of the surface
RiZRi(b)-l- R (see Fig. L tension.
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cated by the superscrifi) in Eq. (2), we use the actual wall V,=V,(R)=V,(R®), ®)
corresponding to the radilR®™ as the dividing interface. '
Within density functional theoryDFT), the grand poten- where V (r)=(4m/3)r3, V(r)=r2L, and R is a mac-
S 1 C )

tial ©); of the system can be expressed as roscopially large radius considered in the thermodynamical
limit, and the surface areas

Qilpl=F +fd3r NVE(r) —p), 3
iLp] [p] p(r)(Vi™(r)— ) 3 . [4W(Rgb))2, for a spherical wall
p= S 9
where F [p]=Felp]+ Figlp] is the intrinsic Helmholtz ' 2mRPIL,  for a cylindrical wall.
free energy functional that can be split into an ideal gas i
contribution Fig[ p] and an exces@ver the ideal gasterm  1he sum rule in Eq(7) can then be expressed as
Fed pl. The only explicit dependence 6X;[ p] on the exter- 9
nal potential originates from the second term in Bj). The (RH) R ) 2Bys(RY) dys(RY)
equilibrium density profilep(r) satisfies the Euler-Lagrange PiRs Rgb) Rgb) aRgb)
equation wT
(10)
5Qilp] _ for a spherical wall and
=0. 4
o) (b) (b)
R Bye(R:”) dye(Re”)
For the equilibrium density profile(r), the density func- p(RY) (;) =pBp : (b)c ° (bc) (11
tional reduces to the grand potential of the system, $¢., Re Re IRe T

=Qi[p(r)], and we can rewrite Eq2) as o ) o
for a cylindrical wall. Equationg10) and (11) indicate that

Q[p(H]+pVi different versions of DFTs might lead to different contact
yi=— o) L (5)  values neacurvedwalls even if the underlying equation of
A state is the same, which leads to identical contact values at a

hard planar wall. As pointed out by Hendersdr26], these

From Egs.(1), (3), and(4) it follows that the change in the sum rules have interesting implications plfR;") is analytic
grand potential due to an infinitesimal change of the radiug,g 5 function oR *=(R®+R)"1, one has

R™® of the curved wall, at constant chemical potentiaand

temperatureT, is given by Ci(1) Ci(2) Ci(3)
9, L 8Q[p] ap(r) L V() ' RP+R (RP+R)2 (RP+R)? .
IR®) _f o op(r) oR® +f drp(r) IR®) 12
. (6)  Wwith co=pBp for both the spherical and the cylindrical wall
and expansion coefficiene$” for j=1,2, ... .Note that the

The first term on the right-hand side of E@) vanishes by expansion in Eq(12) is assumed to converge for arbitrary
virtue of Eq.(4) while the second term, for the external po- nonzero values oR;. This assumption will be corroborated
tential given in Eq.(1), is equal toB™!A; p(R"), where by our numerical results in Sec. Ill. With E(L2), the solu-
p(R") denotes the contact density of the hard-sphere fluid dion of the differential equatiof10) can be written as

the curved wall. This leads to the sum rul@d]

o, C1 . 2¢® 1 2¢f In(RPIR)
A, B 4wRZ2p(RY),  for a spherical wall Bys(Rg7)=——| 1+ cWw @”L c®  (RD)2
JR® 27R.Lp(RY), fora cylindrical wall.
“ @ 20, 1 1 ] 3
Cgl) (Rgb))Z (Rgb))3 !

In the case of a cylindrical wall, we consider the thermody-

namic limit lim _ _({./L) so that effects due to a finite whereD, is an integration constarmgl)=c§1)+ 28pR, and
lengthL of the cylinder drop out. We note that the sum rulesC?=c®+cVR+ BpR2. Likewise, with Eq.(12) the solu-
in Eq. (7) are valid for all one-component fluids in contact tion of the differential equatiofll) can be written as
with hard-spherical or cylindrical walls and are satisfied by

all density functionals within weighted-density approxima- ch> In(Rf:b)/R) D. 1

tion [2]. BY(R)=C| 1+ 1) pd | A1) pb)
Using the actual radiuR® also as the radius of the di- G’ R G Re

viding interface(see Fig. 1, the grand potentiaf);= —pV,; 1

+9,A® of the system is separated into a bulk and surface (—b 1 (14)

term with the accessible volume, (R((: )?
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whereD, is an integration constant a@{")=c{+ BpR. In  considered here is simply the excess chemical potential of
the case of the spherical wall(R{) has the form speciesh in the dilute limitp,—0, i.e.,

BAQ=—c{V, (18)
Bys(R)=Bys(=)

26; In(RP/R)
I=—mt ()2
s (Rs™)

Although Eqgs.(17) and(18) are formally exact, it is impor-
(150 tant to note that this approach within a bulk theory is ex-
1) ) ) pected to only work reliably if the considered fluid is in a
whereys() =B~ "(cs”/2)+ pRis the surface tension of the sjngle phase. In the case of phase separation, which could
planar wall and lead to wetting or drying of the big sphere, this approach
most likely would fail[37].

We evaluate Eq.18) within the framework of Rosenfeld’s
FMT. It was shown by Rosenfel88] that FMT in the bulk
limit is closely related to scaled-particle thed8PT), so that
is the so-called Tolman lengf27], which plays an important the predictions of our bulk theory can be considered as SPT
role in nucleation theorj,10—13. We note that the value of results, even though their derivation is quite distinct from a
the Tolman length depends on the choice of the dividingraditional application of SPT40]. Within this approach
surface; here the dividing surface has the radi{®. If ~ [34,39, the excess free energy functioriaver the ideal gas
these logarithmic terms in the expansion of the surface teriS given by
sions do not vanish, the concept of the Tolman length appar-
ently breaks down for cylindrically curved and generally B]—'exzf d3r ®({n,}), (19
shaped wall$25,26.

The analyticity ofy(R) in terms of 1R is of considerable
importance because it provides the basis for the so-call
Helfrich expansion of the surface free energy of arbitrarily N '
curved surfaces in powers of the principal curvat(iggs29. no(r)=2> | & p;(rHwP(r—r"), (20)
Although this approach appears to be very useful for describ- =1
ing membraneg30], it has been shown recently that the

presence of long-ranged dispersion for¢ds31,33 or of =1,... N. In Rosenfeld’s approach there are six different

drying or wetting films[33] destroys the aforementioned weighted densities, four are scalar and two are vectorlike
analyticity for fluid interfaces and prevents the use of aFor a general hard body one hag39,41]

Helfrich-type interface Hamiltonian for such systems.

- c?+cYR+ BpR?

5 =
T cV+28pR

(16)

e\gherena denote weighted densities,

with geometrical weight functionsw!) of species j

We investigate the curvature dependence of the surface wd (1) =0 (RO —rl)
tension as well as relationships between thermodynamic and 3 ’
local properties of a hard-sphere fluid following two different W(zj)(r) = 5(|RD —r])

routes. First, in Sec. Il the surface tension is determined from

a bulk theory in which the curved wall is considered as the Wy — a0 (i _
. [ e wy3(r)=nW§(|RW —r|),

surface of an additional component at infinite dilution. Sec-

ond, a numerical approach based on the minimization of the H )

Rosenfeld’s fundamental measure the¥T) free energy wi(r)=—wY)(r),

functional[34,35 is presented in Sec. lll. In this approach, Am

the hard-sphere fluid is considered to be exposed to the ex- k()

ternal potential of Eq(1). wg‘)(r)= Ewg)(r)’
II. BULK THEORY )

P D (r)y= H® ()
We start by considering the bulk of a one-component wy1(r)= 7 —wya(r), (21)
hard-sphere fluid in a volumé,; with V,,.— R® in the ther-
modynamic limit. The grand potential of this system is givenywhereR()=R{)( 4, ¢) is the radius vector to the surface and

ﬁy.éloA: y pYTOI' w_htlarepfls the pr(;:tjssure of t:ﬁthard-sphdere n0) is its outward unit vector normal to the surface at point
uid. A single particle of a second components inserted  p() of particlej. HY andK are the integrated mean cur-

|nt<|) th|st ?yfte”;- Irtlhy|ew ct)_f Ith? f:)r:lcivx{;ng d'f%usi'orlj' th%vature and integrated Gaussian curvature of the pargjcle
only restriction for this particle is that it must be hard and oqhectivenyf39,41).

convex. The grand potential of the new system is In the bulk limit for which the density profileg;(r) are

Q=0,+AQ, 1 constant, as considered in this section, the vector weighted
0 (17 densities vanish, and E¢l8) takes the form

whereA () measures the change of the grand potential due to

the insertion of a single particla Q) equals the one-particle —cf)”— P 0P

J b
. ; . - i~ =03t ——0t ——0O+ ——{o, (22)
direct correlation functiof14,15,38 which in the bulk limit ang>® " any”% angttt ang°
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with characteristic functiong;, i=0, ... ,3, of theshape of
the particle of specieb.

Assuming the general functional of the form given by
Egs. (19)—(21), one has for a general convex hard particle

(39,41
3=V, (23
£=A®), (24
H (b)
§1=A(D)E, (25
and
K (0)
Lo=A" 71—, (26

PHYSICAL REVIEW E 68, 031602 (2003

BO=— Bppy(Vip— V)
(b) SPT H® K®
AT BYRw T b1t ol (32
By choosing the surface of the convex particle as the di-
viding interface, the bulk contribution to the grand potential
is simply Qo= —p"Y(Vioi— V) and the surface tension
follows directly as

b) 1 (b SPT H®) K®
By(H®) K )):ﬂyHW+E ¢1+E¢o- (33
The particular choice of the dividing interface underlying Eq.
(33) is motivated by the simplicity of the resulting expres-
sion for the surface tension. Other choices of the dividing
interface would lead to significantly more complex expres-
sions and the elegant, simple form of E§3) would be lost.

where the shape of the particle is specified by its volumeDbviously within this bulk approach, it is impossible to pick

Vv®) its surface areA®, and integrated curvaturés® and
K®),

up a contribution to the surface tension which is proportional
to the logarithm of the radius of curvature.

Within FMT there are several expressions for the excess The surface tension in Eq33) is always positive for a
free energy densityp. For the given problem, we have cho- nonzero packing fractiom and its change for small curva-

sen the original Rosenfeld forfi34]

ture due to an increase in curvature is described by the Tol-
man lengths; which within this approach is defined by

NiNy—Ny-N3
C({na})=—no In(1=ng)+ ——"— y(HO KO =y3011-2H® 5+ O(K®)], (34
n3—3n,n,-n, so that it is independent of the shape of the convex particle
- (27)  with
247(1—nj3)
The partial derivatives of the excess free energy density with 5= 1 _n- ! (35)

respect to the weighted densities in the dilute limit of species

b depend only on the packing fractiopand the radiuf of
the hard-sphere fluid:

b 37y 1+ p+ 7?

= = Bppy, 28
My 4nR® (1—7)° Bppy (28)
P 3n(2+7) sPT
=TT T = pysh 29
an, 87TR2(1_77)2 YHwW (29
c?CI)_ 3n 30
(?_nl_R(l—_n)=¢l' (30
and
(?(D— In(1 = 31
&—%——n( —n)=do. (31)

SPT

In the above equationppy and ypy, are the Percus-Yevick

- = R.
87hvaw 712

Thus within this approach we find that the generalized
Tolman length for a general hard convex cavity is negative,
provided the surface of this hard cavity is chosen as the
dividing surface. The grand potentidq. (32)] and the sur-
face tensiofEq. (33)] have been derived for a general con-
vex hard wall and are related to the Helfrich Hamiltonian
[28]. In order to be able to calculate the contact density of a
hard-sphere fluid on the basis of the sum rule in &g.one
has to evaluate the expression in E8Q) for special cases.
For a big spherical particle, the mean curvaturd”
=1/RP and the Gaussian curvatute!®=1/(R()2. By
combining Eqs(33) and(10) within the present bulk theory,
one finds for the contact value of the density profile of a
hard-sphere fluid at a big hard sphere:

9—772 1+ )__ R_2
A7(1—-7)°R® (L+7 Rs ”Rg '
(36)

P(R;):BPPY_

compressibility equation of state and the scaled-particle
theory expression for the surface tension of a hard-spher€or finite curvatures the contact density is smaller than in the

fluid at a planar hard wall40], respectively.
With the characteristic functions in Eq23)—(26) and the
partial derivatives given by Eq$§28)—(31), one finds within

planar limit, which in the present approach is given by the
Percus-Yevick compressibility pressugppy. The differ-
ence between the contact density at finite curvature and its

this approach for the grand potential of a hard-sphere fluigplanar wall limit is a quadratic function in R,. A traditional

surrounding any convex hard partidbe

SPT approacf42,43, in which an expression for the contact
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density p(RJ) divided by the bulk density is derived, also T T T T ' T ' T )
yields a quadratic dependence of the contact density or 021~ @ n=0.25 B
1/Rs. This latter quantity plays a central role in SPT.

For a cylindrical wall we have to proceed more carefully.
Since Eq.(33) was derived assuming a finite convex body,
we take the limitL— only after the cylinder is inserted

into the bulk system. In this limit, the mean curvatu#&” 0.05 oo T

=1/(2R) and the Gaussian curvatukd”=0. The con- re—/1 . 1 . 1

))RZ

0.15 =
» =02

0.1 i

Brg (RS

tact density of a hard-sphere fluid close to a cylindrical wall 0 0.2 0.4 06 08 1
follows from Eq.(33) and the sum rule in Eq11) as

L] I L] I T I T I L] -)

(b) =

972 (1+7) R 0.5 n=0.42 5 b

P(Rg)zﬁpPY_ 3,3 2 R_ ’ (37) N“ S ©° s ° .n=04'

4m(1-7)°R c 2, 04 55 % 5 —

= o 09 5 0 ®° :

which is linear in 1R.. For large radii of curvatureR; & 03¢0 55 °° n=0354

—o, the contact densities at a big sphe@R.) and at a n=0.3 7

cylmderzp(RC*) are related by A(RJ)—p(RS)=Bpey 0.2 i

+O(1/RY). 0 0.2 0.4 0.6 0.8 1

R/R(b)

III. NUMERICAL RESULTS s

FIG. 2. The surface tension of a fluid of hard spheres with radius

As mentioned in the Introduction, an alternative approacgf near a hard-spherical wall of radi&” . Symbols denote results

for calculating the: surface ten_S|on and t.he c.:omaCt densn_y btained from direct minimization of the Rosenfeld functional,
a harq-sphere fluid at a spherlical or Cy“nd”(,:al wall (,:ODS'St%vhereas the full lines are predictions of the bulk thefsge Eq.
of'm|n|m|zmg the density functional;3) numerically. Wlth!n (33)]. Small packing fractions=0.1, . . . 0.25) are shown ifia)

this approach, _the cur\_/e_:d vyall enters the pro_blem via thgng large packing fractionsp=0.3, ... 0.42) in (b). The agree-
external potential specified in Eql). The solution of the  ment petween both routes is excellent for low packing fractions.
corresponding Euler-Lagrange equation yields the inhomoTowards high values of;, the level of quantitative agreement de-
geneous equilibrium density profile(r). From p(r) both  creases, while the bulk theory still reproduces qualitatively the DFT
the contact densitigs(R;") =p(r=R,") and the surface ten- results.

sionsy;(R™) (5) follow directly. In order to verify that the

numerical DFT results for the contact density and the surfac@acking fractions, while it remains good for large curvatures.
tension(from minimization are consistent and to probe the This deviation between the two different routes is expected
numerical accuracy of our DFT calculation, we confirmedbecause in the limiR(" -, the bulk route reduces to the
numerically that the sum rule in Ed7) is satisfied very SPT prediction of the surface tension at a planar wall, which
accurately(within the range of four to six significant digits is known to overestimate the surface tension of a hard-sphere
depending on the packing fractipn fluid at a planar hard wall4]. Since SPT obtains the planar

Although the minimization of the density functional and wall limit from extrapolating the behavior at small cavity
the bulk route discussed in Sec. Il are, in principal, equivasizes[40], this deviation is no surprise. Recently it was sug-
lent approaches, they differ in practice because the actugested that SPT can be reoptimized by taking the planar wall
density functional for the hard-sphere fluid is an approximadimit into account more accurate[y87].
tion. Within an approximate treatment, it is expected that the Even for packing fractions at which the level of quantita-
numerical solution of the Euler-Lagrange equation, which igtive agreement is moderafsee Fig. 2)], there is a good
based on a variational principle, is more accurate than thgualitative agreement between the DFT results and our bulk
aforementioned bulk approach. Nevertheless, for the hardapproach. This implies that the curvature dependence of our
sphere fluid which, apart from freezing, exhibits only anumerical data ofys can be best approximated by a polyno-
single phase both routes are expected to be in qualitative anial quadratic in /R®® with no evidence for a logarithmic
even semiquantitative agreement with each other. term.

First, we present in Fig. 2 our numerical results for the The DFT results for the surface tension of a hard-sphere
surface tension at a spherical wall as obtained by full minifluid in contact with a hard cylindrical wall are shown in Fig.
mization of the Rosenfeld functional for values gfin the 3. Again the quantitative agreement between the DFT results
range betweem=0.1 and»=0.42 and with radii of curva- (symbols and predictions of the bulk theorfull lines) is
tureRY in the rangeR” =R andR{®=1000@R. The DFT  excellent for low packing fractions and fair at higher values
results are denoted by symbols and the predictions of thef ». The curvature dependence of the DFT data is captured
bulk theory by full lines. For small values of we find both  very well by a function linear in Rgb) as predicted by the
results to be in excellent, quantitative agreement for all curbulk route.
vatures, see Fig.(d). Close to the planar wall limit, the level A remarkable feature of EJ33) is that the ratio of the
of quantitative agreement reduces significantly for largercoefficients corresponding to the term of the leading order in

031602-5



BRYK et al. PHYSICAL REVIEW E 68, 031602 (2003

— T In- UL B -0.2 —————T—T— T
02 ] ¢ spherical wall
9 - o cylindrical wall 1
1= 0.15 — bulk theory o o
e o n=01 _| 0.3 ° -
Y ) di ) S | 1 | 1
0.2 0.4 0.6 0.8 1 o ©
o B <] 7
T | T | T T
0.4 (b) T]= 0.42 "o o O o -] [ ] 6
g e o0 °°° ° 56 © ¢ 04 7]
x o0 00 © ° —5 oo o ° ° ®h=04 ®
@F;) 0 00 © 00 ©
% 03go ° b
< n=0.35 | - <
& 5 60 00 © S0 © !
0.2 n=03 |
1 1 | L ] L ] 1 _0 5 1 | 1 | 1 | 1 |
0 0.2 0.4 0.6 0.8 1 ~0 0.1 0.2 0.3 0.4
®)
R/R. 1

FIG. 3. The surface tension of a fluid of hard spheres with radius  FIG. 4. The Tolman lengtt#; of a fluid of hard spheres with
R near a hard cylindrical wall of radiu®” . Symbols denote re- radiusR at curved hard walls as a function of the packing fraction
sults obtained from direct minimization of the Rosenfeld functional, 7. Diamonds and circles denote results for spherical and cylindrical
whereas the full lines are predictions of the bulk thefsge Eq.  walls, respectively, while the full line corresponds to the prediction
(33)]. Small packing fractions#=0.1, ... 0.25) are shown ifa)  of the bulk theory[Eq. (35)].
and large packing fractionsp=0.3, . .. 0.42) in (b). The agree-
ment between both routes is excellent for low packing fractionsand
Towards high values ofy the level of quantitative agreement de-
creases, while the bulk theory still reproduces qualitatively the DFT a®

results. Yc(R(cb)):a(co)+ Cb,
R

1/R; for spherical and cylindrical symmetry is exactly 2 . . .
(sinlceHgb)=2H(cb)). This behavior can also be found in the -~ € Simplest form.ul?ls) t%)ﬂt our DFT data. To a good
numerical results of DFT calculations, i.e., based on the ingpproxmanon, the ratia,"/a. " equals 2 for all densities.

homogeneous density profileér). In Table I, we show val- T(ry)s ra(t(;;)_agrees with the predictions of_the bulk theory;
ues of least-squares fits assuming that ag’=ag’ is the planar wall surface tension. The Tolman

length [compare Eq(34)] is given by 8= —aV/(2a(?)
and (9= —aM7a®. In Fig. 4, we plots{® (diamonds and
5(T°) (circles together with the prediction of the bulk theory
(35 (full line) as a function of the packing fraction.

Thus neither the bulk theory nor the numerical DFT re-
sults provide any hints for the occurrence of logarithmic
terms in the expression of the surface tension of hard-sphere
Hfuids in contact with curved hard surfaces. For a spherical
cavity this result, within the bulk theory, agrees with the SPT
predictions[42,43, as expected. However, both the bulk
theory, as well as SPT, and the DFT are approximate in na-

1 2
o

ﬁ’yS(R(b)):a(O)+—+—
S ST e

TABLE I. Values ofal?, al’, a{®), anda" as obtained from
least-squares fit to DFT data of the surface tension of a hard-sphe
fluid in contact with a spherical and cylindrical hard wall for vari-
ous values of the packing fraction. Note that Eq.(33) predicts
aalM=2 for all .

7 aPR2=a®R? alR a® a®rR  aMa® ture and thus this observation gains full weight only in com-
bination with the proof given in Ref45] of the nonexistence

0.10 0.03083 0.02660 0.00837 0.01342  1.98 of a logarithmic term in the free energy for the spherical
0.15 0.05281 0.04245 0.01286 0.02145  1.98 cavity. We note that this proof does not hold in the presence
0.20 0.08078 0.06061 0.01754 0.03062  1.98 of long-ranged forcef4,31,33 or of drying or wetting films
0.25 0.11643 0.08175 0.02235 0.04121 1.98 [33]. In Ref.[45] it was speculated, but not proven, that this
0.30 0.16213 0.10674 0.02725 0.05360 1.99 proof should also hold generally for convex cavities. That the
0.35 0.22127 0.13660 0.03229 0.06823 2.00 logarithmic term does not show up in the numerical result
0.40 0.29924 0.17195 0.03800 0.08548 2.01 underscores the high quality of Rosenfeld’s FMT.
0.42 0.33761 0.18747 0.04084 0.09312 201 For the contact density, one knovaspriori that for all

values ofn both the DFT route and the bulk approach yield
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FIG. 5. The contact values of the density profile of a fluid of ~ FIG. 6. The contact values of the density profile of a fluid of
R() =R~ R as obtained from direct minimization of the Rosenfeld Rt =R~ R as obtained from direct minimization of the Rosenfeld
functional (symbol3, from the bulk theonfEq. (36)] (solid lineg, ~ functional (symbol$ and from the bulk theoryEq. (37)] (solid

results for the packing fractiom=0.2 are given in@ and for  9iven in (a) and for »=0.4 and 7=0.42 in (b). Even for high
=0.4 and »=0.42 in (b). Even for high packing fractions, the Packing fractions, the agreement between the DFT results and the

agreement between the DFT results and the predictions of the bufredictions of the bulk theory is very good.
theory is very good.

lead to the following main results.
the same contact valug(R;"—) = Ap, of the density pro- (1) We have studied the curvature dependence of the sur-
file of a hard-sphere fluid in the limit of the planar wall. For face tension Of a hard_sphere ﬂu|d at hard_spherica| and Cy_
finite curvature, we find that the contact densities obtainegingrical walls (Fig. 1) obtained by minimizing the Rosen-
numerically from DFT(symbolg and analytically from our  fe|d's fundamental measure density functional. We have
bulk theory fory(R{) (full lines) are in very good quanti- found no indications of logarithmic singularities in the ex-
tative agreement for all values of, as shown in Fig. 5 for pansion of the surface tension in terms of curvatures of
spherical walls and in Fig. 6 for cylindrical walls. Only for spherical or cylindrical walls. For the spherical cavity, this
very large curvatures the actual DFT contact densities argesult is in line with the proof of the nonexistence of a loga-
slightly overestimated by the bulk theory. rithmic term in the free energy.

For the spherical wall in Fig. 5, we also plot the contact (2) Based on the Rosenfeld’s fundamental measure theory,
density obtained from an empirical fit to simulation datawe have derived an analytical expression for the surface ten-
(dotted lineg by Degreve and Hendersd6]. In terms of  sjon of a hard-sphere fluid close to hard, arbitrarily curved,
R; !, this fit interpolates linearly between the planar wall convex walls in terms of their integrated mean and Gaussian
limit within the Carnahan-Starling theory and the contactcurvatures,H® and K [see Eq.(33)]. This approach,
value of the pair correlation functiog(r) corresponding to which is a SPT approach in natUr@8], also does not render
R/Rs=0.5. At high packing fractions, this fit deviates from logarithmic singularities of the surface tension as a function
our results in the planar wall limit due to the difference be-of the radii of curvature. For a spherical cavity this fact
tween the Carnahan-Starling equation of state and thagrees with observations of Refgl2] and [43]. There is
Percus-Yevick compressibility pressure which underlies botlyood agreement between the results of the density functional
our approaches. At very high packing fractions, there argheory and the bulk theory which treats the curved wall as
additional deviations because the simple linear fit does nahe surface of a particle of a second component in infinite
capture the actual higher-order termsR@*. Nonetheless, dilution (Figs. 2 and 3 The Tolman length as a function of
the overall agreement between our results and this fit is goodhe packing fraction of the hard-sphere fluid is shown in
Fig. 4.

(3) Based on the sum rule for curved substrates, we have
obtained expressions for the contact values of the density

Our analysis of the local structure and the thermodynamprofile of a hard-sphere fluid close to spheridzd. (36)] and
ics of the hard-sphere fluid near hard curved substrates haylindrical [Eq. (37)] walls. A comparison with the density

IV. CONCLUSIONS AND SUMMARY
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functional results indicates that the analytical expressions dfon to the surface tension linear in the curvature is twice as

the contact values are very reliable; only at rather high packtarge as for a cylinder.

ing fractions they slightly overestimate the density functional ~ Thus our findings indicate that nonanalyticities of the cur-

values(Figs. 5 and §for large curvatures. vature dependence of surface tensions arise only via disper-
(4) The ratio of the leading-order terms in the expansionsion forces acting on the fluid particl$] or via the onset of

of the surface tension as a function of curvature, obtainedlrying or wetting transitions on curved substrajtas].

from full minimization of the fundamental measure func-

tional, for cylindrical and spherical symmetry equal¢s2e

Table ). This is in agreement with the aforementioned bulk We thank Bob Evans for stimulating discussions. R.R.

theory[Eq. (33)]. This also agrees with the general feature ofwants to thank Jim Henderson for a very helpful and enlight-

the Helfrich theory{ 28], in which for a sphere the contribu- ening correspondence.
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